3 Engagement Overview Dashboard Functions

3.1 Wrangling Functions

3.1.1 read_dirt_engagement_data

Import untidy student engagement csv file as an R dataframe object

Description:

     Import untidy student engagement csv file as an R dataframe object

Usage:

     read_dirt_engagement_data(input_course)
     
Arguments:

input_course: Name of course directory (ex. psyc1, spd1, marketing,
          etc)

Value:

     tower_engage: Dataframe containing student engagement information
     with videos and problems

Examples:

     read_dirt_engagement_data(input_course = 'psyc1')
     

3.1.2 clean_engagement_data

Remove initial messy strings in module_id column and rename mode column

Description:

     Remove initial messy strings in module_id column and rename mode
     column

Usage:

     clean_engagement_data(dirt_engagement_data)
     
Arguments:

dirt_engagement_data: tower_engage_dirt dataframe object

Value:

     dirt_engagement_data : tidy dataframe adter wrangling

Examples:

     clean_engagement_data(dirt_engagement_data = obtain_dirt_engagement_data)
     

3.1.3 write_tidy_engagement_data

Write cleaned data as a csv into the specified course directory

Description:

     Write cleaned data as a csv into the specified course directory

Usage:

     write_tidy_engagement_data(input_course, cleaned_data)
     
Arguments:

input_course: Name of course directory (ex. psyc1, spd1, marketing,
          etc)

cleaned_data: Dataframe containing cleaned data.

Examples:

     write_tidy_engagement_data(input_course = 'psyc1', cleaned_data = clean_engagement_data)
     

3.1.4 wrangle_overview_engagement

This function automatically reads a file named "tower_engage_dirt.csv"
from the specified course directory and output a clean files named
"tower_engage.csv" in the same directory

Description:

     This function automatically reads a file named
     "tower_engage_dirt.csv" from the specified course directory and
     output a clean files named "tower_engage.csv" in the same
     directory

Usage:

     wrangle_overview_engagement(input_course)
     
Arguments:

input_course: String of course directory name

Examples:

     wrangle_video(input_course = "psyc1")
     

3.2 Server Functions

3.2.1 filter_chapter_overview

Filter course items dataframe by the selected course module

Description:

     Filter course items dataframe by the selected course module

Usage:

     filter_chapter_overview(input_df, module = "All")
     
Arguments:

  module: One of the modules of the course.

 item_df: The course items dataframe.

Value:

     A dataframe filtered by the selected course module.

Examples:

     filter_chapter_overview(tower_item, "all")
     

3.2.2 get_module_vector

Create a module name vector sorted by the course structure index. This
vector is used in the module filtering select box in ui.R

Description:

     Create a module name vector sorted by the course structure index.
     This vector is used in the module filtering select box in ui.R

     Create a module name vector sorted by the course structure
     index.This vector is used in the module filtering select box in
     ui.R

Usage:

     get_module_vector(item_df)
     
     get_module_vector(item_df)
     
Arguments:

 item_df:

 item_df: The course axis dataframe

Value:

     chap_name

     chap_name A vector containg all unique module names.

Examples:

     get_module_vector(item_df = tower_item)
     

3.2.3 create_module_name

Create a new column "chapter_name" for course item dataframe in order
to implement module filtering

Description:

     Create a new column "chapter_name" for course item dataframe in
     order to implement module filtering

Usage:

     create_module_name(item_df)
     
Arguments:

 item_df: A course axis dataframe only containing item name

Value:

     item_df A coure axis dataframe adding chapter_name column

Examples:

     create_module_name(item_df = tower_item)
     

3.2.4 get_nactive

Compute how many students engaged with each course item after filtering
student demographic

Description:

     Compute how many students engaged with each course item after
     filtering student demographic

Usage:

     get_nactive(detail_df)
     
Arguments:

detail_df: Filtered student engagement dataframe

Value:

     summary_df Summarized-view of engagement dataframe.

Examples:

     get_nactive(detail_df = tower_engage)
     

3.2.5 join_engagement_item

Join filtered summary engagement dataframe with filtered item dataframe
to match "item " ,"item name" and "nactive" convert all module item
nacitve number to a constant to draw seperator line later

Description:

     Join filtered summary engagement dataframe with filtered item
     dataframe to match "item " ,"item name" and "nactive" convert all
     module item nacitve number to a constant to draw seperator line
     later

Usage:

     join_engagement_item(filtered_engagement, filtered_item)
     
Arguments:

filtered_engagement: Filtered engagement dataframe.

filtered_item: Filtered course axis dataframe

Value:

     tower_df Dataframe containing item name, item category and how
     many student engaged with it

Examples:

     join_engagement_item(filtered_engagement = filtered_tower_engage,filtered_item = filtered_tower_item)
     

3.2.6 get_module_nactive

Count how many filtered students engaged with the filtered course
module

Description:

     Count how many filtered students engaged with the filtered course
     module

Usage:

     get_module_nactive(tower_df)
     
Arguments:

tower_df: Student engagement dataframe.

Value:

     student_num A number refers to the maximum number of student
     engaged with one item witin the selected course module.

Examples:

     get_module_nactive(reactive_tower_df())
     

3.2.7 make_engagement_eiffel_tower

Make effiel tower plot : all video/problem course items vs. number of
engaging student

Description:

     Make effiel tower plot : all video/problem course items vs. number
     of engaging student

Usage:

     make_engagement_eiffel_tower(tower_data)
     
Examples:

     make_engagement_eiffel_tower(tower_data = reactive_tower_df())